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Nuclear Overhauser effect (NOE) data are routinely used to
determine the structure of biomolecules.1 In a first-order approx-
imation, the isolated spin pair approximation (ISPA) relates the
intensity of an NOE to the inverse sixth power of the inter-proton
distance.2 Molecular motion,3 spin diffusion,4 and experimental
noise lead to additional contributions to cross-relaxation rates not
captured by the ISPA. Calculated intensities will therefore differ
from the true values. To avoid distortions in the calculated structure,
intensities are usually converted into distance bounds, and structure
calculation boils down to the generation of structures that satisfy
the bounds.5 This approach seems plausible but comes at a price.
First, the bounds have to be set empirically and often need to be
adjusted selectively to be mutually consistent. Second, flat-bottom
restraint potentials used to incorporate the experimental distances
into a calculation weigh all measurements equally, provided that
their back-calculated distances lie within the bounds. Hence,
structurally supported measurements and those close to being
violated contribute equally to the total energy. Third, bounds that
are too large reduce the information content of the data, which leads
to less precise and less accurate structures.

A probabilistic approach to structure determination6 avoids these
difficulties. NOE intensities are described by means of a likelihood
function which, in the present context, consists of the ISPA to
predict the intensities from the structure and an error distribution
to account for deviations between measured and calculated values.
Ideally, the error model reproduces the true, however unknown,
“experimental” error distribution in the data. Here, we develop
formal and pragmatic arguments to show that a log-normal
distribution is a natural choice for describing these deviations. Our
model permits the calculation of a structure directly from the
measured intensities and improves structural quality compared to
the usual bounds representation.

NOE intensities are inherently positive. A calibration factorγ
needs to be introduced in order to relate the intensity scale to a
distance scale. However, changing the units does not affect the
information content of the data. Hence, the distribution,g(Iobs, Icalc),
of the deviations between observed and calculated intensities must
be invariant under scaling, that is,g(Iobs, Icalc) ) γg(γIobs, γIcalc),
which follows from the transformation rule of probability densities.
This general equation must also hold for the special caseγ ) 1/Icalc,
and we obtain

with the univariate densityh(‚) ) g(‚,1) defined on the positive
axis. Equation 1 states that the error distribution depends on the
ratio of observed and calculated intensity, meaning the error is
multiplicative. This is in contrast to the usual, in our view,
inappropriate practice of assuming that errors in NOE intensities
or in NOE-derived distances are additive. We can freely choose
the densityh. In the absence of systematic errors, the log-error

scatters around zero with a certain varianceσ2. In this case, the
Maximum entropy principle7 determines the least-biasingh, and
we obtain

The log-normal distribution in eq 2 is restricted to the positive
axis and asymmetric around its medianIcalc. Measurements are
incorporated without bias in the sense that the probability of over-
or underestimating the true intensity is both 1/2. This is not the
case for error distributions defined on the entire axis, such as a
Gaussian, which assign a nonvanishing probability to unobservable
negative intensities. The parameterσ quantifies the relative deviation
of the observed from the calculated intensity, provided that their
difference is sufficiently small.

Figure 1a,b shows the “experimental” distributions of the
intensity error for two data sets measured on the proteins ubiquitin8

and the Tudor domain9 using the published X-ray structures10,11as
reference. The fitted log-normal distribution captures most of the
features of the experimental distributions. For comparison, we
performed the same analysis for the distance differencesdobs-dcalc

as one would do when modeling the experimental error with, for
example, a Gaussian distribution. Figure 1c,d demonstrates that the

g(Iobs, Icalc) ) g(Iobs/Icalc,1)/Icalc ) h(Iobs/Icalc)/Icalc (1)

Figure 1. Experimental intensity error distributions for ubiquitin (a) and
the Tudor domain (b). Solid lines indicate fitted log-normal distributions.
(c,d) Corresponding distance error distributions and fitted Gaussians.
Because intensities were unavailable for ubiquitin, we used the ISPA to
convert the published distance data into intensities (1444 nonredundant
distances taken from the restraint file, PDB code 1d3z). The Tudor data
(1875 intensities from two13C and15N edited spectra) were calibrated such
that observed and calculated values have the same geometric mean.

g(Iobs,Icalc) ) 1

x2πσ2Iobs

exp{- 1

2σ2
log2(Iobs

Icalc
)} (2)
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distance error distributions are asymmetric and long-tailed, and that
a Gaussian can significantly underestimate the likelihood of
observing outliers. Both properties are much better accounted for
by the log-normal distribution due to the logarithmic transformation.

From a pragmatic point of view, the log-normal model has
several favorable properties. Unlike a probability distribution
corresponding to a flat-bottom potential, it has a unique maximum.
Hence, measurements are not weighted equally but are penalized
depending on the degree of disagreement with the structure.
Furthermore, the log-normal distribution is invariant under power
law transformations. If we considerIobs′ ) (Iobs)R with exponentR,
the transformed intensity still follows a log-normal law, however,
with transformed median and error parameter (Icalc)R andσ′)|R|σ,
respectively. Because the ISPA is a special case of a power
transformation (R ) -1/6), we obtain identical structures regardless
whether we refine against intensities or distances, provided thatσ
has been transformed appropriately.

We have implemented the log-normal model in our software for
probabilistic structure determination (ISD, in preparation). ISD is
based on Monte Carlo sampling rather than energy minimization
to explore the probability distribution over conformational space.12

This allows us to determine the most likely conformation of a
macromolecule, including its uncertainty. In an original structure
determination, a reference structure that could be used to determine
the optimal shape of the log-normal distribution by adjustingσ is
usually unavailable. Since the error parameter is a priori unknown,
it needs to be estimated during structure calculation, which is
straightforward in a probabilistic framework.6 We employed the
ISD software package to calculate the structure of ubiquitin and
the Tudor domain from the published data sets.8,9 Estimation ofσ
yielded optimal values ofσ ) 0.94 for ubiquitin andσC13 ) 1.24
andσN15 ) 0.98, respectively, for the two data sets of the Tudor
domain. The most probable structure of ubiquitin showed a heavy
atom backbone RMS deviation of 0.61 Å to the X-ray structure,
and for the Tudor domain, we found a value of 0.70 Å. A
recalculation of the Tudor domain, this time using distances instead
of intensities and a transformed error parameterσ′ ) σ/6,
demonstrates the power law invariance of the log-normal model.
Both simulations are identical in terms of accuracy and precision
(Figure 2a,b).

To assess the impact of the log-normal model on structural
quality, we repeated the calculations using distance bounds and a
flat-bottom potential with harmonic walls and a force constant of
50 kcal mol-1 Å-2. Both calculations were performed with the ISD
software; for the Tudor domain, we determined the distance bounds
by using the rule implemented in the computer program ARIA.13

The structures generated with the log-normal model were found to
be systematically closer to the X-ray structure than those obtained
with the standard procedure (Table 1). We also observe an
improvement in terms of precision. For ubiquitin, the heavy atom

backbone ensemble RMSD, calculated from the 100 most likely
conformations, amounts to 0.30 Å, compared to 0.44 Å in case of
the flat-bottom potential. For the structured part of the Tudor
domain, the structural uncertainty is low for both models (0.35 and
0.37 Å, respectively). The gain in accuracy is further supported by
a significant improvement of widely used indicators of structural
quality (Table 1).

Application of the log-normal model is not limited to the
description of errors in NOE data. The log-normal distribution has
a clear statistical interpretation. It can be thought of as the “Gaussian
for positive quantities” and is, therefore, expected to be equally
well suited for modeling the error distribution of other experimental
observables that are inherently positive. Due to its unique maximum
and the resulting individual weighting of each measurement, the
log-normal model exploits the experimental information to a greater
extent than distance bounds. This improves both the quality and
the accuracy of the calculated structures and is also expected to
prove useful in defining a meaningful figure of merit for NMR
structures solely based on the experimental data.
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Figure 2. Power law invariance of the log-normal model. The conforma-
tional distributions of the Tudor domain obtained using intensities (solid
line) and distances (dashed line) are identical in terms of heavy atom
backbone RMSD to the X-ray structure (a) and CR precision (b).

Table 1. Comparison of Structural Quality Indicatorsa

Procheck log-normalb boundsb log-normalc boundsc

most favored 80.5( 3.1 76.8( 3.8 79.4( 4.0 68.9( 4.6
allowed 19.3( 3.1 22.6( 3.9 19.9( 4.2 27.0( 4.7
gen. allowed 0.2( 0.5 0.5( 0.8 0.7( 1.1 1.5( 2.1
disallowed 0.0( 0.0 0.0( 0.0 0.0( 0.0 2.6( 1.4

WhatIf
QUACHKd -0.54( 0.25 -1.45( 0.31 -1.88( 0.28 -2.41( 0.25
NQACHKe -1.34( 0.35 -2.02( 0.40 -0.38( 0.49 -1.29( 0.57
RAMCHKf -3.14( 0.40 -3.30( 0.45 -1.64( 0.74 -4.15( 0.62
BBCCHKg 1.16( 0.57 0.76( 0.56 -0.10( 0.70 -2.36( 1.01

RMSD [Å]h 0.64( 0.06 0.72( 0.07 0.68( 0.06 0.99( 0.06

a Averages and standard deviations for the 100 most likely conformations
generated with the log-normal model and a flat-bottom restraint potential.
b Ubiquitin. c Structured part of the Tudor domain (residues 92-144).
Procheck15 Ramachandran statistics are in percent, WhatIf14 values are
Z-scores.d,eFirst and second generation packing quality.f Ramachandran
plot appearance.g Backbone conformation normality score.h Heavy atom
backbone RMS deviation to the X-ray structure.
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